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The entropy theory of glasses is used to derive the glass temperature, Tg, of a binary polymer blend in 
terms of the glass temperatures of the two substituents. The formula is Tg=B1Tgl +B2Tg2, where B~ is the 
fraction of flexible bonds of substituent i. A bond is flexible if rotation about it changes the shape of the 
molecule. Bonds in side groups as well as in the backbone are to be counted. This formula assumes that 
the free volume, taken here to be the volume fraction of empty lattice sites, is the same for each of the 
three materials. It has no parameters. The above equation expressed in weight fractions, Wi, is 
(Tz-Tgl)~l, rl(71/fOl)+(Tg-Tg2)W2(72/o2)=O, where co i is the weight of a monomer unit and 7i is the 
number of flexible bonds per monomer unit. A more general treatment is given. One variation of the 
more general treatment which expresses the properties of the blend in purely additive terms gives 
Tg=B1Tgl+B2Tg2+KB~B2(Tgl-Tgz)(Vol-V02), where Voi are the free volume fractions of the homo- 
polymers at their glass temperatures and K is a constant. The added term is usually small. The most 
general form of the equation requires the energy of interaction between the two unlike molecules, which 
can be estimated by volume measurements on the blend. 
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INTRODUCTION 

Compatible polymer blends are simply one-phase, two- 
component systems, both components being polymers. 
Polymer blends are exceptional in that two polymers 
picked at random are usually not compatible. This is due 
to London dispersion forces between unlike molecules 
being the geometric mean of the forces between corre- 
sponding like pairs (see the discussion following equation 
(15)). Nevertheless, many blend systems have recently 
been discovered 1. Aids to forming polymer blends are 
choosing appropriate molecular weights, covalently 
coupling the two polymers and, of course, picking 
compatible monomer species. 

One of the tests of blend compatibility is that the 
system has one rather than two glass temperatures. So 
it is sensible to have estimates of glass transition 
temperatures. The entropy theory of glasses (also called 
the Gibbs-Di Marzio (GD) theory) has been successful 
in predicting the glass transition temperature for many 
physical systems 2'3. Related to the problem at hand, the 
glass temperature has been predicted for copolymers 4, 
for plasticizers 5 and for blends of different molecular 
weights of the same species (polydisperse systems2). 
A comment and equation (6) have been published 
previously 3 but the treatment was obtuse and not picked 
up by the polymer community. The basic equation of 
the GD theory is equation (7) and it can be used to 
predict glass temperatures as a function of molecular 
weight, plasticizer content, copolymer content and relative 
amounts of the two components, all simultaneously! In 
this paper we derive a formula for the T~ of compatible 
blends of large molecular weights, equation (6). This 
formula is identical in form to the Gordon-Taylor 
(GT) equation 6, equation (22), except that K has a 
different interpretation. There are no parameters; only 
the chemical structures need be known. 

The entropy theory of glasses is an equilibrium theory 
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that has been successful in predicting the location of the 
glass temperature, but not in predicting the all important 
kinetic properties. It starts with the observation that all 
materials, even glasses, have equilibrium properties and 
asks what they are. The Flory-Huggins lattice model, so 
successful for liquid polymers, is simply applied to low 
temperatures. A second-order thermodynamic transition 
is found to occur at low temperatures and this transition 
is identified with the glass transition because the observed 
glass transition has the same discontinuities in thermal 
expansion coefficient and specific heat as predicted by 
the theory. The cause of glass formation is attributed to 
the decrease in the number of configurations of the system 
to relatively small values. The number of configurations 
becomes so small that flow, which is viewed as a jumping 
from one allowed configuration in phase space to 
another, is impeded. According to the lattice model this 
occurs at a finite temperature which we identify with the 
glass transition temperature 2. Note that relatively recent 
Monte Carlo simulations show that the Huggins version 
of the lattice model which was used in our computations 
is very accurate 7's. This means that the statement that 
the number of system configurations is decreasing 
drastically to small values at a finite temperature is valid 
even though the transition may not be perfectly sharp. 
Thus if, at a minimum, the inverse character of the 
relationship between viscosity and cortfigurational entropy 
is accepted, the thermodynamic entropy can be used to 
predict the location in T, P space of the glass transition. 

THEORY 

The entropy theory of glasses predicts that the transition 
occurs when the configurational entropy, S c, reaches a 
critically small value. The Flory-Huggins version of the 
lattice theory actually predicts that So=0 at a finite 
temperature T2 at which a second-order transition in the 



Ehrenfest sense occurs. However, we can derive the 
formula for the glass temperature of blends with weaker 
conditions. 

All that is required is that there is a critical (small) 
value of entropy at which the glass transition occurs. 
Two factors contribute to the decrease in configurational 
entropy as we lower the temperature. The largest effect, 
according to our previous statistical mechanical develop- 
ment, is due to the many configurations of the individual 
molecules. If we use the isomeric state model then there 
are of the order of 3 x configurations (different shapes) at 
high temperatures for each molecule, but at low tempera- 
ture the number is greatly reduced because of rotations 
about semi-flexible bonds to the lower energy shapes. 
The rate at which this decrease occurs is controlled by 
the stiffness energy of the molecule Ae/kT. The formula 
for the fraction of bonds flexed into the ( z -2 )  higher 
energy positions is given by the Boltzmann expression 

f =  ( z -2 )  exp(-Ae/kT)/[1 + ( z -2 )  exp(-Ae/kT)] (1) 

The second (and secondary) effect is due to the entropy 
of mixing of empty lattice sites with sites occupied by 
monomer units of the xmers. This effect is small when 
the van der Waals energy is sufficiently strong to squeeze 
out the holes. This is always true at low temperatures 
because the hole energy, the energy needed to break 
one van der Waals bond, Eh, is always coupled to 
temperature as Eh/kT. At high temperatures the entropy 
of mixing wins out over the bond energy. The formula 
connecting the volume fraction of holes with the hole 
energy is given by 2'9 

ln(V~ ~- 1/S~=) - z'EhS2/2k T = 0 (2) 

Here Vo is the volume fraction of holes, z' the lattice 
coordination number. Sx, which is called the surface site 
fraction, is equal to 

[ ( z ' -  2)x + 2]nx/{ [ ( z ' -  2)x + 2] n~, + z'no} 

and So = 1 -  S~, where no is the number of holes and nx 
is the number of polymer molecules. These equations 
describe how f and n o vary above the second-order 
transition temperature. As we cool through the glass 
transition, f and no freeze into the values appropriate to 
(Tg, Pg). Below Tg, f and n o are constant along constant 
pressure lines. 

To derive the formulae for the glass temperature of 
polymer blends with a minimum of assumptions we use 
the idea that glassification occurs when the configur- 
ational entropy reaches a critically small value. Thus 

Sc(Ae~/kTg~)=SjAe2/kT,2)=S,(Ae/kTg) (3) 

where we are for now ignoring the contribution due to 
holes. Because entropy is monotonic we can immediately 
write 

Ae 1/k 7"1 = Ae2/k T 2 = Ae/k 7", (4) 

If one uses the fact that Ae is a weighted average of the 
homopolymer Ags 

Ae = B1Ael + B2Ae2 5) 

where B~ is the fraction of flexible bonds that are of type 
i, then substitution of equation (5) into equation (4) gives 

T,= B1T~I + B2T~2 (6) 

which is our main result. The derivation of equation (6) 
was very simple in part because we glossed over some 
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details: (1) justification of equation (5); (2) proof that 
free volume effects are not very important; and (3) a more 
careful statement of the meaning of Bi. We now discuss 
each of these points. 

Justification of equation (5) 
The expression for the entropy derived by Gibbs and 

Di Marzio is easily adapted to blends. The result is 

Sc=kxnx[(z' 2)in ( V o ~  no In V~z'-I 
\So/ (xlnl +xzn2) SU 

. ( [ (z ' -2)x+2](z ' - l )]-]  z 
m~ 2 ;J+i~=l (xi-3)nl 

x {In[1 + ( z -  2) exp( -  Ae,/kT)] +fiAeJkT} (7) 

In obtaining equation (7) from equation (20) of Reference 
2 we assumed random mixing of the two species of 
molecules. Vo and So are defined as before except that xnx 
is replaced by xlnl + x2n2 and x = (xlnl + x2n2)/(nx + n2), 
where xi is the total number of flexible bonds per chain 
and is ~i times the number of monomer units per chain. 

Obviously equation (5) will hold if 
! 

ln[1 + ( z -  2) exp( -  Ae/kT)] +fAe/kT= A + DAe/kT (8) 

where A and D are constants. A plot of the left-hand side 
of equation (8) is shown in Fioure 1 and it is highly linear. 
Therefore, equation (5) is justified and equation (6) is 
obtained. The effect of higher-order terms on the 
right-hand side of equation (8) can be estimated by 
assuming the extreme case of no linear term but only a 
quadratic term, i.e. A +D(A~/kT) 2. Then, analogous to 
equation (4), we have 

(Ae~/kTgl) 2 = (Ae2/kTg2) 2 = (Ae/kTg) 2 (9) 

and equation (5) would be replaced by 

(Ae)2 = B I ( A e l ) 2  + B2(Ae2)2 (10) 

so that 

T 2=B1 z 2 Tg + B2T 2 (11) 

Various numerical examples show that equation (l l) 
gives blend Tgs that are only a few degrees different from 
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Figure 1 The contribution to the configurational entropy due to flexes 
versus Ae/kT. For  homopolymers Ae/kT,~2.25. The linearity of this 
curve allows us to use the concept of an effective bond energy for 
homopolymers even though the monomer has bonds of different 
energies, and it allows us to define an effective bond energy for a blend 
of homopolymers 
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those obtained from equation (6). Thus, the effect of 
higher-order terms in equation (8) is negligible and 
equation (5) is justified. 

Free volume effects are not important 
Because equation (1) relates f to Ae/kT and equation 

(2) relates Eh to the free volume V 0 we can write the 
entropy as a function of the variables (AE/kT, E~/kT) or 
(Ae/kT, Vo) or (f, Vo) or (f, E~kT). Therefore, we can 
write, analogous to equation (3), 

Sc(Aet/k T, t, Vol )= Sc( Ae2/k T,2, Vo2)= S~(Ae/k T,, Vo) 

(12) 

We could have made the substitutions from equations 
(1) and (2) directly into equation (8) but this would have 
limited us to a particular form for S¢. We wish to show, 
however, that our result is more general. 

If we set 

Vo1 = Vo2 = V 0 (13) 

equation (4) follows immediately from equation (12), and 
equation (6) is again obtained as before. This is a happy 
circumstance because the free volume theory which 
assumes constant free volume at the glass transition ~°'x ~ 
leads to equation (6) when consistently used. Note, 
however, that in general we cannot accept the notion 
that equation (13) holds, i.e. that the free volume is 
constant at the glass transition. Equation (2) shows 
that free volume is determined by the van der Waals 
energy, Eh, and the temperature location of the entropy 
catastrophe (given by Sc--, 0) is determined by both E h 
and Ae. Thus, in general, V o is not a constant at the glass 
transition. 

To proceed further we need to calculate the free 
volumes via equation (2). Differentiation of equation (2) 
allows us to calculate Aa, the break in the thermal 
expansion coefficient above and below the glass tempera- 
ture and, therefore, to evaluate V o in terms of the 
measurable quantity Aa. This is straightforward for the 
two homopolymers but for the compatible blend we need 
to estimate the effective value of E h. Assuming random 
mixing we obtain 

Eh= V21Eh1 + 2V1V2E12 + V2Eh2 (14) 

where V 1 and V 2 are the volume fractions of polymer of 
type 1 and 2, and E:2 is the energy of a 1-2 bond. In 
general E12 bears no unique relationship to the homo- 
polymer energies, so that we cannot express the free 
volume of the blend in terms of the free volumes of the 
homopolymers. However, if we assume that the forces 
are purely dispersive then* E12 =E~IE~2. This gives 

E h ---- (VlEh~i -~ V2Eh~2) 2 (15) 

One can now in equation (15) substitute for each of the 
energies from equation (2) and obtain the free volume of 
the blend in terms of that of the two homopolymers. 

This prescription for calculating the glass temperature 
of the blend uses only homopolymer properties. It is not 
exact because of the irreducibility of E~2. Further, it 
requires the use of equation (7) in equations (12) so that 
its results depend on the specific form of the entropy. We 
will not proceed further with this development because 

* In London theory the dispersion energy is proportional to the product 
of the polarizabilities; see, for example, Reference 12 

miscible polymer blends violate equation (15). In fact, to 
the extent that equation (15) holds, the two-component 
system is phase separated. We emphasize, however, that 
if E~ 2 is known the above equations can be used to predict 
blend transition temperatures. 

A simpler treatment is to approximate the configur- 
ational entropy by 

So = A + DAe/kT + CV o (16) 

and to use a composition rule for the free volume. We 
choose 

Vo = BI Vol + B2 Vo2 (17) 

It is easy to show that these equations lead to 

Tg~B, T,I + BzT,2 + KB~B2(T,I - T,z)(Vo~ - V02 ) (18) 

with K a material constant. 

A more precise definition of the bond fraction 
The theory we have used is a lattice model theory and 

it requires that each configuration of each polymer fits 
onto the lattice. If we use a diamond lattice then we can 
picture that a bond can rotate about its neighbouring 
bond to any one of three isomeric states. These states 
can be given different energies. Our simple choice is that 
the energy of a chain is given by ( x -  3)fAt. The 3 occurs 
because the first two bonds serve to establish the 
orientation of the molecule in space; only the third and 
subsequent bonds label different internal configurations. 
This nearest neighbour model can be replaced by a more 
accurate counting procedure. These bonds need not be 
in the backbone; they can also be in side groups. The 
only requirement is that on rotation about the bond a 
new shape is obtained. Thus vinyl polymers have two 
flexible bonds per monomer due to the backbone and 
whatever additional flexible bonds occur in the side 
group. Thus poly(vinyl methyl ether) would have a total 
of three flexible bonds per monomer unit while poly- 
(methyl methacrylate) would have four. Polystyrene, 
however, would have only two, the argument being that 
rotation of the benzene ring about the bond that connects 
it to the backbone does not result in a distinguishable 
shape. Proceeding in this way one can build up a table 
of numbers of flexible bonds per monomer. For large 
molecular weights we have 

B1 =XlnlYl/(XlnlYl +x2n2Y2),  B 1 + B  2 = 1 (19) 

where x~ is the number of monomer units per molecule 
of species i and ni is the number of molecules. 

DISCUSSION 

Relation to previous results 
Couchman and Karaz 13, and Couchman 1~17 have 

developed an entropy theory of the glass temperature of 
polymer blends. Their theory is a phenomenological 
theory and requires knowledge of the specific heats at 
the glass temperature of the two homopolymers. Our 
theory is a microscopic theory and requires knowledge 
of molecular quantities. The simplest version of the 
theory (equation (6)) requires only a knowledge of 
chemical structure. 

The Gordon-Taylor equation is based on the premise 
that the free volume at the glass temperature is a constant. 
There seems to be no basis for this assumption in fact. 
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First, the original basis for making the assumption ~°'lt 
was that the slope of the volume at Tg versus Tg for 
various molecular weights of polystyrene was the same 
as the slope of the volume versus T, curves below T.. 
Subsequent measurements by Ueberreiter and Kanig 1"8 
showed this assumption to be incorrect; see Reference 2 
for more discussion of this point. Second, according to the 
lattice model, there is a unique monotonic relationship 
between the free volume defined as Vo and the break in 
the thermal expansion coefficient, A~, above and below 
the glass transition. It is an experimental fact that A~ is 
not a constant. 

Copolymers and blends are closely related. Copolymers 
can be viewed as chemical blends. The additivity rules 
used for copolymers can then be applied to compatible 
blends. In fact the additivity rules for blends are expected 
to be more accurate since no chemical bonds are involved. 
It is not surprising then that the formulae for copolymers 
have their counterparts in blends. Our formula is 
identical, with a slight reinterpretation of the meaning of 
bond fraction, from that given previously. In Reference 4 
we showed that the GD theory was superior to GT 
theory for copolymers. Claims for blends must await the 
verdict of experiments. 

Generalizations and limitations 
The lattice model allows for the flex energy about 

different chemical bonds to have different values 19. Thus 
we can in principle treat more complicated molecular 
systems. However, if we were to do this we would need 
to know more than one stiffness energy per molecule and 
knowledge of the homopolymer glass temperature would 
not be enough to determine all the Aes. We would need 
spectroscopic information, which we do not have. 
However, the approximate validity of equation (8) allows 
us to use an average energy for each homopolymer 
molecule provided that the energies are not too disparate. 

Another aspect of the problem is that the theory 
requires that both kinds of molecules fit nicely onto the 
same lattice. This rarely happens with real molecules. 
The molecules may be incommensurate with each other, 
and therefore cannot fit onto the same lattice. Another 
possibility is that unlike molecules may fit together in a 
way that like molecules cannot. For example, antigens 
and antibodies fit together as hand and glove, but pure 
antigens (or pure antibodies) do not fit together well. An 
alternative approach to that used in this paper is to 
choose the degree of polymerization x to be proportional 
to the volume of the molecule, while the total number 
of flexible bonds per molecule is equal to 7 times the 
number of monomer units per molecule. There is no 
ambiguity or added parameters with this procedure 
because specific volumes are well known. This idea has 
been used previously to predict successfully the specific 
heat discontinuity at the glass transition 2°. The effect is 
to adjust the relative contributions of holes and flexes to 
the entropy. We do not pursue this argument in this 
paper. 

If we now relate the bond fraction to the weight fraction 
via 

Wl=t ,  olBl~2/(oJ1Bl~2+t.o2B2~l), W1 + W 2 =  1 , (20) 

then equation (6) can be written as 

(T,-- T,1)Wl(71/oJ,) + (Tg- Tg2)W2(~2/o)2)=O (21) 

Glass temperature of polymer blends: E. A. Di Marzio 

This equation is identical to that for the glass transition 
of copolymers; see equation (4a) of Reference 4. The 
reason for this is that the additivity assumption on the 
flex energy was the same in both cases (i.e. equation (8)). 
For random copolymers, along the chain there are 1-2 
flex energies as well as 1-1 and 2-2 flex energies. The 
1-2 energies need not be related to the 1-1 and 2-2 
energies. So for vinyl copolymers the assumption is an 
approximation. As pointed out in the previous paper, 
condensation copolymers are free of this difficulty. Blends 
also have no 1-2 bond energies. 

Although we have not stressed the point, equation (7) 
allows glass temperatures to be estimated for systems 
that are blends, copolymers, plasticized systems and 
systems of different molecular weight, all simultaneously! 
Equation (6) (or equation (21)), however, is valid for 
large molecular weights only and for unplasticized 
systems. 

One can go even further and develop general formulae 
that avoid the random mixing approximation. The 
formulae needed can be found in References 21 and 22. 

Although an extensive comparison of theory and 
experiment is not attempted here we display data 23 for 
the system consisting of a blend of polystyrene and 
polyvinylmethylether (PS/PVME) as well as predictions 
from equation (21). Using molecular weights of 100 for 
PS and 58 for PVME monomer units and two flexible 
bonds per monomer for PS and three for PVME we 
obtain the results displayed in Figure 2. Equation (21) 
can be written as 

T,=(T,I +RT,2)/(I+R), R=W2~2~o1/W1~,o~2 (22) 

100 

T 5O 
I-- 

-30 
0 0.5 1.0 

WE = 
Figure 2 Glass temperature versus weight fraction for various values 
of r=y2col/7loJ 2 for PS/PVME. Our best estimate of r is 0.387 but the 
data is best fitted by an r value between 0.2 and 0.3. The Gordon-Taylor 
equation gives the same curves, but r has the interpretation plAa2/p2 A°tl. 
Our present best estimate of this value places it between the bounds 
0.65 and 1.2 
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Thus the amoun t  of  bowing in the curves of  Figure  2 is 
determined by the ratio r =72~ol/~1o2. Fo r  r =  1 we have 
a straight line. O u r  best estimate of  the value of  r for 
P P / P V M E  is 0.387, while the value which best fits the 
data  is more  nearly equal to 0.29. The predicted curves 
are labelled by their values of  r. Da ta  that  have the shapes 
of  the curves displayed in Figure  2 are explainable in 
terms of  the simple theory presented here. 

The G o r d o n - T a y l o r  equat ion is identical in form t o  
equat ion (22) but  the quant i ty  corresponding to r is 
K =  plAotz/p2Ao~l. In general the G T  equat ion does not  
fit with experiment unless K is treated as an arbi t rary 
parameter .  The fit of  equat ion (6) or, equivalently, 
equat ion (22) to experiment will be a t tempted at a later 
date. 
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